Search results for "Cesium vapor"

showing 5 items of 5 documents

Measurement of the permanent electric dipole moment of the neutron

2020

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey’s method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a 199Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magne…

Physics - Instrumentation and DetectorsMagnetometerFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesMeasure (mathematics)S017EDMlaw.inventionHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysislawcesium0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]time reversal: invarianceStatistical analysisNeutronNuclear Physics - ExperimentPhysics::Atomic Physics[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Nuclear Experiment (nucl-ex)Detectors and Experimental Techniques010306 general physicsNuclear ExperimentNuclear ExperimentPhysicsn: electric momentInstrumentation and Detectors (physics.ins-det)Cesium vaporMagnetic fieldElectric dipole moment* Automatic Keywords *Ultracold neutronsElementary Particles and FieldshistoryAtomic physicstime reversal: violationmagnetic field: oscillationParticle Physics - Experiment
researchProduct

Optical non-contact electric field mapping by LIF in Cs vapor

2007

We present experimental and theoretical studies of the possibility of using cesium vapor as a tracer gas for optical non-contact electric field mapping. Optical images of electric field distributions have been obtained.

Materials scienceCesium vaporMolecular physicssymbols.namesakeStark effectElectric fieldTRACERsymbolsMaxwell-Bloch equationsPhysics::Atomic PhysicsAtomic physicsLaser-induced fluorescenceAstrophysics::Galaxy AstrophysicsLaser beams
researchProduct

Characterization of high-temperature performance of cesium vapor cells with anti-relaxation coating

2017

© 2017 Author(s). Vapor cells with antirelaxation coating are widely used in modern atomic physics experiments due to the coating's ability to maintain the atoms' spin polarization during wall collisions. We characterize the performance of vapor cells with different coating materials by measuring longitudinal spin relaxation and vapor density at temperatures up to 95 °C. We infer that the spin-projection-noise-limited sensitivity for atomic magnetometers with such cells improves with temperature, which demonstrates the potential of antirelaxation coated cells in applications of future high-sensitivity magnetometers.

inorganic chemicalsAtomic Physics (physics.atom-ph)MagnetometerAnalytical chemistryFOS: Physical sciencesGeneral Physics and Astronomyengineering.material01 natural sciences7. Clean energyphysics.atom-phMathematical Scienceslaw.inventionPhysics - Atomic Physics010309 opticsEngineeringCoatinglaw0103 physical sciencesPhysics::Atomic Physics010306 general physicsSpin relaxationApplied PhysicsPhysicsVapour densitySpin polarizationRelaxation (NMR)Cesium vaporCharacterization (materials science)Physical SciencesengineeringAtomic physics
researchProduct

Extreme increase in atomic transition probability of the Cs D_2 line in strong magnetic fields under selective reflection

2016

Selective reflection of 852-nm laser radiation from the interface between cesium vapor and the sapphire window of a 30-micrometer-thick microcell was used to record an extreme increase in the probability of the Fg=3→Fe=5 transitions associated with the Cs-atom D2 lines in magnetic fields with inductions ranging from 300 to 3200 Gauss. We showed that a group of seven transitions Fg=3, mF=−3, −2, −1, 0, +1, +2, +3→Fe=5, mF=−2, −1, 0, +1, +2, +3, +4 was formed in accordance with the selection rules ΔmF=+1 for σ+-circularly-polarized radiation. These seven transitions have much higher probabilities in 500–1000 Gauss magnetic fields, with three of the transitions having probabilities higher than…

PhysicsSapphire windowApplied MathematicsGaussGeneral EngineeringRadiationLaser01 natural sciencesCesium vaporAtomic and Molecular Physics and OpticsMagnetic fieldlaw.invention010309 opticsComputational Mathematicslaw0103 physical sciencesSelective reflectionAtomic physics010306 general physicsLine (formation)Journal of Optical Technology
researchProduct

Scalar Dark Matter in the Radio-Frequency Band: Atomic-Spectroscopy Search Results

2019

Among the prominent candidates for dark matter are bosonic fields with small scalar couplings to the Standard-Model particles. Several techniques are employed to search for such couplings and the current best constraints are derived from tests of gravity or atomic probes. In experiments employing atoms, observables would arise from expected dark-matter-induced oscillations in the fundamental constants of nature. These studies are primarily sensitive to underlying particle masses below $10^{-14}$ eV. We present a method to search for fast oscillations of fundamental constants using atomic spectroscopy in cesium vapor. We demonstrate sensitivity to scalar interactions of dark matter associate…

PhysicsAtomic Physics (physics.atom-ph)Dark matterScalar (physics)FOS: Physical sciencesGeneral Physics and AstronomyObservableAtomic spectroscopy01 natural sciencesCesium vaporPhysics - Atomic Physics3. Good healthGravitationHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Particle mass0103 physical sciencesRadio frequencyAtomic physics010306 general physicsPhysical Review Letters
researchProduct